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Abstract. In the Shapley–Scarf economy there are n agents. Each one is
endowed with one unit of an indivisible good (house) and wants to exchange it
for another, possibly the most preferred one from the n different houses in the
market. In this economy, a core is always nonempty and a core allocation can
be found by the famous Top Trading Cycles algorithm. Recently, a modifica-
tion of this economy, containing Q ≥ 2 types of goods (say, houses and cars for
Q = 2) has been introduced. We show that if the number of agents is 2, a com-
plete description of the core can be found efficiently. However, when the number
of agents is not restricted, the problem to decide the nonemptyness of the core
becomes NP-hard. We also show that even the problem to decide whether an al-
location exists in which each agent strictly improves compared to his endowment,
is NP-complete.
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1 Introduction

In the seminal paper by Shapley and Scarf [10] a special economy with indivisible
goods, the so-called housing market was introduced. In this economy each agent
owns one unit of an indivisible unique good (house) that is specific for him and
wants to end-up again with just one unit of good. The preference relation of
an agent is simply a linear ordering (possibly with ties) of a subset of houses.
Under such assumptions, a core allocation always exists, which can be proved
constructively by the Top Trading Cycles (TTC for short) algorithm due to Gale.
There are many studies of the housing market in the literature, not only

because it is interesting matematically, but also for its ability to model many
real markets: large-scale exchange of government subsidized housing in China

∗This work was supported by the VEGA grants 1/3001/06, 1/3128/06.
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[11], matching graduates of the United States Naval Academy to their first posts
as Naval Officers [7], assigning students to schools [1], exchange of incompatible
donors of kidneys for transplantation [8] etc.
Konishi, Quint and Wako [5] considered a modification of the Shapley-Scarf

economy with Q ≥ 2 types of indivisible goods (if Q = 2, the types may be say
houses and cars). Each agent originally owns one unit of each type of good (say
one house and one car) and wants to exchange them so as he again ends up with
one unit of each type. Preferences of agents are given as strict linear orders of
Q-tuples and in [5] they are supposed to be separable. Now, the strict core as
well as core may be empty already in the case of just two types of goods. For
additively separable preferences Konishi, Quint and Wako [5] proved that the
core is always nonempty if the number of agents is 3 and Q = 2. In the proof
they transformed the economy to the associated NTU game and used the Scarf’s
theorem [9]. We show that in general it is an NP-hard problem to decide the
nonemptyness of the core, even in the case Q = 2.
Pareto optimality in the housing market has also been studied. In [2] a poly-

nomial algorithm for finding a Pareto optimal allocation has been devised and
some structural results for the set of Pareto optimal allocations have been de-
rived. In the view of the negative results in Section 4 of this paper, a similar
achievement for the case with several types of goods seems to be improbable.
The organization of the paper is as follows. In Section 2 we introduce the

used notions. Then in Section 3 we deal with the case of just two agents and
show that the core (which is here equivalent with the set of allocations that are
simultaneously Pareto optimal and individually rational) is easy to describe. The
hardness proofs are contained in Section 4 and finally Conclusion contains some
open problems and directions for further research.

2 The description of the model

The set of agents is denoted by A, their number by N . In the economy there are Q
types of indivisible goods and each agent a ∈ A is endowed with one, for him spe-
cific unit of each type of good, i.e. with a Q-tuple g(a) = (g1(a), g2(a), . . . , gQ(a)).
We shall denote by Gi the set of goods of type i in the economy, i.e. Gi =⋃

a∈A gi(a) and G = G1 × G2 × · · · × GQ. Each agent wishes to end up with a
Q-tuple from G; such Q-tuples will be called bundles and denoted by lowercase
bold letters. Each agent a ∈ A has preferences over bundles, i.e. a strict lin-
ear ordering P (a) on a subset G(a) of the set G, the set of acceptable bundles.
When representing preferences, we shall write the acceptable bundles in the or-
der from the most preferred one to the least prefereed one and we suppose that
g(a) ∈ G(a) for each agent a ∈ A. The notation x �a y means that agent a
prefers bundle x to bundle y, notation x �a y means that agent a either prefers
bundle x to bundle y or is indifferent between them. The N -tuple of preferences
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(P (a), a ∈ A) will be denoted by P and called the preference profile. The set
of all possible preference profiles will be denoted by Π. An economy is a pair
E = (A,P).
With some abuse of notation, in the case of bundles we shall usually write,

say in case Q = 4, instead of (g1(a), g2(b), g3(c), g4(d)) simply (a, b, c, d), as no
confusion should arise.
An allocation is a function X : A → G such that xi(a) 6= xi(b) for each

i = 1, 2, . . . , Q and each a, b ∈ A, a 6= b. An allocation X is individually rational,
if x(a) ∈ G(a) for each agent a ∈ A.

Definition 1 A coalition S ⊆ A blocks an allocation X if there exists an alloca-
tion Y such that

1. y(a) �a x(a) for each agent a ∈ S, and

2.
⋃

a∈S y(a) =
⋃

a∈S g(a).

Definition 2 An allocation X is in the core of economy E if no coalition blocks
it and it is said to be Pareto optimal for economy E if A does not block it.

The set of all core allocations of economy E will be denoted by Core(E).
Konishi, Quint and Wako [5] proved in Proposition 2.1 that Core(E) 6= ∅

for each economy with N = 3, Q = 2. However, they assumed that the agents’
preferences are additively separable, i.e. each agent a has Q utility functions
ua

i : Gi → R, i = 1, 2, . . . , Q such that a prefers a bundle x = (x1, x2, . . . , xQ)
to bundle y = (y1, y2, . . . , yQ) if and only if

∑Q
i=1 u

a
i (xi) >

∑Q
i=1 u

a
i (yi). Already

with N = 4 the core may be empty (see Example 2.3 in [5]) even with additively
separable preferences. Here we show that the assumption of additive separability
in Proposition 2.1 of [5] is crucial.

Example 1 Consider economy E with three agents and two types of goods with
the following preferences:

P (a) : (a, b), (c, a), (a, a)

P (b) : (c, b), (b, a), (b, b)

P (c) : (a, c), (b, c), (c, c)

To show that no allocation X = (x(a),x(b),x(c)) can be in Core(E), consider
three cases.

(i) If x(a) = (a, b), then necessarily x(b) = (b, a). Then x(c) = (c, c) and
coalition {b, c} is blocking via y(b) = (c, b) and y(c) = (b, c).

(ii) If x(a) = (c, a), then agent b must receive bundle (b, b). But then coali-
tion {a, b} is blocking by assigning bundles (a, b) and (b, a) to agents a, b,
respectively.
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(iii) Finally, if x(a) = (a, a), then agent c cannot obtain x(c) = (a, c), so coali-
tion {a, c} is blocking via y(a) = (c, a) and y(c) = (a, c).

3 Two-agents economies

Let A = {a, b} and let Q be arbitrary. We will show that in case of two agents
the complete core of the economy can be generated by a simple algorithm.
For a bundle x ∈ G we shall denote by x its complement, i.e. xi = a implies

xi = b and xi = b implies xi = a for all i = 1, 2, . . . , Q. Suppose that the
preferences of agents are of the following form

P (a) : x1,x2, . . . ,xk

P (b) : y1,y2, . . . ,y`

and consider algorithm CoreN2 given in Figure 1.

Input: Economy E = (A,P) with |A| = 2.
Output: Reduced preference lists P ′(a), P ′(b).
1. begin denote all entries in P (b) as unlabelled;
2. for i = 1, 2, . . . , k do if xi /∈ P (b)
3. then delete xi from P (a) else label xi in P (b);
4. delete all unlabelled entries from P (b);
5. denote all entries in P (b) as unlabelled;
6. for i = 1, 2, . . . , k do if xi ∈ P (a) then
7. begin label xi;
8. for each yj ∈ P (b) do
9. if yj is worse than xi in P (b) and unlabelled then
10. delete yj from P (b) and yj from P (a)
11. end;
12. end

Figure 1: Algorithm CoreN2

Example 2 Let Q = 4 and the preference lists of agents a and b be

P (a) : (a, b, a, b), (b, b, b, b), (a, a, b, b), (a, b, b, b), (a, a, a, a)

P (b) : (b, a, a, a), (a, b, b, a), (b, a, b, a), (a, b, b, b), (b, a, a, b), (b, b, b, b)

(so k = 5 and ` = 6). In line 3 of the algorithm, bundles (b, b, b, b), (a, a, b, b)
are deleted from P (a) and in P (b) bundles (b, a, b, a), (b, a, a, a) and (b, b, b, b) and
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labelled. Then in line 4 bundles (a, b, b, a), (a, b, b, b) and (b, a, a, b) are deleted
from P (b). We are left with the reduced lists

P (a) : (a, b, a, b), (a, b, b, b), (a, a, a, a)

P (b) : (b, a, a, a), (b, a, b, a), (b, b, b, b)

Then, for (a, b, a, b) in P (a), bundle (b, a, b, a) is labelled in P (b) and bundles
(b, b, b, b) and (a, a, a, a) are deleted from P (b) and P (a), respectively. Finally,
for bundle (a, b, b, b) in P (a), bundle (b, a, a, a) is labelled in P (b), but nothing is
deleted, as the only worse bundle (b, a, b, a) in P (b) is labelled. Finally, Core(E)
contains two allocations

X1 = ((a, b, a, b), (b, a, b, a)) and X2 = ((a, b, b, b), (b, a, a, a)).

Now we argue that Algorithm CoreN2 is corect.

Theorem 1 If Algorithm CoreN2 results in both preference lists being empty then
Core(E) = ∅. Otherwise Core(E) is equal to the set of all allocations of the form
(x,x) for x ∈ P ′(a).

Proof. First we show that no bundle that was deleted in the course of Algorithm
CoreN2 can be a part of a core allocation. This is clear for the bundles deleted
in lines 3 and 4 of the algorithm, as their complements are not acceptable for
the other agent. Now suppose that bundle y was deleted from P (b) in line 10 of
the algorithm; suppose that this happened because of xi ∈ P (a). But this means
that agent b prefers xi to y. Moreover, since y was not labelled before, y is not
a complement for any of the bundles xj, j < i and so agent a prefers xi to y.
Thus allocation (y,y) cannot be in the core of E .
Conversely, if x ∈ P ′(a), it is easy to see that (x,x) ∈ Core(E), as for any

other allocation (y,y) either agent a prefers x to y of agent b prefers x to y.

The complexity estimation of Algorithm CoreN2 can be obtained as follows.
In lines 2–3 it is necessary, for each xi in P (a), to scan the whole preference list
P (b). This gives O(k`) operations. Lines 4 and 5 need O(`) operations each and
lines 6–11 again O(k`) operations. As the length of each preference list is at
most 2Q, the complexity bound of Algoritm CoreN2 is O(22Q), but this is still
polynomial in the size of the representation of the economy.

4 NP-hard problems

In our transformations showing NP-completeness of some problems, we shall use
a variant of Satisfiability, called R3-sat, see e.g. [3]. In an instance of R3-sat
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a boolean formula B in CNF is given, such that each clause contains exactly
3 literals and each variable appears in B exactly twice nonnegated and exactly
twice negated. The question is whether B is satisfiable.
For each instance B of R3-sat with clauses C1, C2, . . . , Cm and variables

v1, v2, . . . , vn we construct an econonomy EB with a special structure. The agents
will be divided into n variable cells EB(vj) and m clause cells EB(Ci). In a
variable cell EB(vj), agents p1j and p2j will correspond to the first and to the
second occurrence of literal vj, agents q1j and q2j to the first and to the second
occurrence of literal vj. In the clause cell EB(Ci) agents c1i , c

2
i , c
3
i correspond to

the first, second and third position in Ci.
We will also use the notation c(a) for a ∈ {p1j , p2j , q1j , q2j} to denote the clause

agent corresponding to the position in the formula containing the associated
literal, and conversely, v(a) for a ∈ {c1i , c2i , c3i } will denote the variable agent
corresponding to the particular occurrence of a variable in the associated position.
For example, let

C3 = v1 + v2 + v3

and for v1 let this be its second occurence, and for v2 and v3 let these be their
first occurences in the formula. Then

v(c13) = p21, v(c
2
3) = p12, v(c

3
3) = q13, c(p

2
1) = c13, c(p

1
2) = c23, c(q

1
3) = c33.

We shall say that an agent a is linking in allocation X , if x(a) contains some
good originally owned by an agent not belonging to the cell of agents a.

4.1 Core of the economy

Let us consider the problem

core existence
Instance. An economy E .
Question. Does E admit a core allocation?

Theorem 2 Problem core existence is NP-hard already in the case when
Q = 2 and agents have strict preferences over bundles.

Proof. In the polynomial transformation, econonomy EB constructed for an
instance B of R3-sat with clauses C1, C2, . . . , Cm and variables v1, v2, . . . , vn will
have N = 4m+ 6n agents and Q = 2.
Variable cell EB(xj) consists of 6 agents p1j , p

2
j , q
1
j , q

2
j , r

1
j , r2j and clause cell

EB(Ci) contains four agents c1i , c
2
i , c
3
i , zi. Preferences of agents of EB are given in

Figures 2 and 3.
Now we derive the properties of core allocations in variable and clause cells.
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P (p1j) : (r
1
j , p

2
j), (p

1
j , q
2
j ), (p

1
j , c(p

1
j)), (p

1
j , p
1
j)

P (p2j) : (r
2
j , p

1
j), (p

2
j , q
1
j ), (p

2
j , c(p

2
j)), (p

2
j , p
2
j)

P (q1j ) : (r
1
j , q
2
j ), (q

1
j , p

2
j), (q

1
j , c(q

1
j )), (q

1
j , q

1
j )

P (q2j ) : (r
2
j , q
1
j ), (q

2
j , p

1
j), (q

2
j , c(q

2
j )), (q

2
j , q

2
j )

P (r1j ) : (p
2
j , r
2
j ), (q

2
j , r

2
j ), (r

1
j , r
1
j )

P (r2j ) : (q
1
j , r

1
j ), (p

1
j , r
1
j ), (r

2
j , r
2
j )

Figure 2: Preferences of agents of a variable cell

P (c1i ) : (c
1
i , v(c

1
i )), (zi, c

1
i ), (zi, c

2
i ), (c

1
i , c
1
i )

P (c2i ) : (c
2
i , v(c

2
i )), (c

2
i , c
1
i ), (c

1
i , c
1
i ), (c

2
i , c
3
i ), (c

2
i , c
2
i )

P (c3i ) : (c
3
i , v(c

3
i )), (c

3
i , zi), (c3i , c

2
i ), (zi, zi), (c3i , c

3
i )

P (zi) : (c3i , zi), (c3i , c
3
i ), (c

2
i , zi), (zi, zi)

Figure 3: Preferences of agents of a clause cell

Lemma 1 Let X be a core allocation. Then in each variable cell EB(vj), alloca-
tion X can behave in only one of the two ways, either

p1j → (r1j , p2j); p2j → (r2j , p1j); r1j → (p2j , r2j ); r2j → (p1j , r1j )

(this will be called the X 1j case), or

q1j → (r1j , q2j ); q2j → (r2j , q1j ); r1j → (q2j , r2j ); r2j → (q1j , r1j )

which will be caled the X 2j case in what follows.

Proof. Clearly, any allocation X that is not blocked by any coalition must be
individually rational. Now consider several cases for X .

• Case 1. Suppose that x(r1j ) = (r1j , r1j ). Then necessarily x(r2j ) = (r2j , r2j )
and this implies that none of the agents p1j , p

2
j , q
1
j , q

2
j is assigned his first

choice bundle. But then X is blocked e.g. by coalition {p1j , p2j , r1j , r2j} as-
signed bundles according to X 1j . (In the case x(r2j ) = (r2j , r2j ) the argument
is symmetric.)

• Case 2. Suppose that both r-agents are assigned their second choice bun-
dles, i. e. x(r1j ) = (q

2
j , r

2
j ) and x(r

2
j ) = (p

1
j , r
1
j ). Then x(p

1
j) = (r

1
j , p

2
j) and

x(q2j ) = (r
2
j , q
1
j ). But then for agents p2j and q1j their first and second choice

bundles are not available and they will form a blocking coalition by helping
themselves to the bundles (p2j , q

1
j ) and (q

1
j , p

2
j), respectively.

• Case 3. Now suppose that both r-agents are assigned their first choice
bundles, i. e. x(r1j ) = (p

2
j , r
2
j ) and x(r

2
j ) = (q

1
j , r

1
j ). Then we have x(p

2
j) =
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(r2j , p
1
j) and x(q

1
j ) = (r

1
j , q
2
j ). But then for agents p1j and q2j their first

and second choice bundles are unavailable and they will form a blocking
coalition by exchanging their endowments to get the bundles (p1j , q

2
j ) and

(q2j , p
1
j), respectively.

Hence necessarily one of the r-agents has his first choice bundle and the other one
his second choice bundle, so w.l.o.g. suppose x(r1j ) = (p

2
j , r
2
j ) and x(r

2
j ) = (p

1
j , r
1
j ).

Then the only available bundles for players p1j and p2j are their first choice bundles,
i. e. (r1j , p

2
j) and (r

2
j , p

1
j). This leads to the allocation X 1j .

Finally notice that the assumption x(r1j ) = (q
2
j , r

2
j ) and x(r

2
j ) = (q

1
j , r

1
j ) leads

to the allocation X 2j .

Lemma 2 If X is a core allocation, then in each clause cell EB(Ci), x(ck
i ) =

(ck
i , v(c

k
i )) for at least one agent ck

i , k ∈ {1, 2, 3}.

Proof. First suppose that g2(v(ck
i )) is unavailable for all agents in EB(Ci). Then

in fact, the agents of EB(Ci) have to consider the reduced preference lists given
in Figure 4.

P (c1i ) : (zi, c
1
i ), (zi, c

2
i ), (c

1
i , c
1
i )

P (c2i ) : (c
2
i , c
1
i ), (c

1
i , c
1
i ), (c

2
i , c
3
i ), (c

2
i , c
2
i )

P (c3i ) : (c
3
i , zi), (c3i , c

2
i ), (zi, zi), (c3i , c

3
i )

P (zi) : (c3i , zi), (c3i , c
3
i ), (c

2
i , zi), (zi, zi)

Figure 4: Reduced preferences of agents of a clause cell

The reduced economy E ′ of Figure 4 is in fact identical with the economy
constructed by Konishi, Quint and Wako in [5, Example 2.3.], which has no core
allocation. To be self contained, we repeat here the argument from [5]. There
are only four individually rational allocations for E ′, namely

Y1i : c1i → (c1i , c1i ); c2i → (c2i , c2i ); c3i → (c3i , c3i ); zi → (zi, zi)

Y2i : c1i → (c1i , c1i ); c2i → (c2i , c3i ); c3i → (c3i , c2i ); zi → (zi, zi)

Y3i : c1i → (zi, c
2
i ); c2i → (c1i , c1i ); c3i → (c3i , c3i ); zi → (c2i , zi)

Y4i : c1i → (c1i , c1i ); c2i → (c2i , c2i ); c3i → (zi, zi); zi → (c3i , c3i )

Allocation Y1i is blocked by coalition {c2i , c3i } via allocation Y2i , allocation Y2i
is blocked by coalition {c1i , c2i , zi} via allocation Y3i , allocation Y3i is blocked by
coalition {c3i , zi} via allocation Y4i and finally allocation Y4i is blocked by coalition
{c2i , c3i } via allocation Y2i .
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Lemma 3 If at least one of the agents c1i , c
2
i , c
3
i is linking and for the other c-

agents of EB(Ci) the good g2(v(ck
i )) is unavailable, then there exists an assignment

of bundles to agents of EB(Ci) such that no agent from EB(Ci) can be in a blocking
coalition.

Proof. It is easy to verify that the sought assignments are

• if all c-agents are linking, let x(zi) = (zi, zi),

• if both c1i and c3i or both c2i and c3i are linking, assign to the remaining
agents the bundles as in Y1i ;

• if both c1i and c2i or c2i only are linking, assign to the remaining agents the
bundles as defined by Y4i ;

• if only c1i is linking, remaining agents will be assigned the bundles as in Y2i ;
and finally

• if only c3i is linking, remaining agents will be assigned the bundles as in Y3i .

Now suppose that formula B is satisfied by a truth assignment f . Let us
create allocation X by allocating bundles to agents in the following way:

(i) If vj is true in f , set x(p1j) = (p
1
j , c(p

1
j)), x(p

2
j) = (p

2
j , c(p

2
j)) and the remain-

ing agents of EB(vj) will get the bundles according to allocation X 2j .

(ii) If vj is false in f , set x(q1j ) = (q
1
j , c(q

1
j )), x(q

2
j ) = (q

2
j , c(q

2
j )) and the remain-

ing agents of EB(vj) will get the bundles according to allocation X 1j .

(iii) Assign to each agent ck
i corresponding to a position of a true literal in B the

bundle (ck
i , v(c

k
i )). Since B is true in f , in each EB(Ci) at least one of the

agents ck
i gets this bundle and for the remaining agents of EB(Ci) the good

g2(v(ck
i ))) is not available due to (i) and (ii), so a core allocation exists due

to Lemma 3.

So we have a core allocation for the constructed economy.
Converselly, let X be a core allocation for economy EB. Then X acts on any

variable cell EB(vj) according either to allocation X 1j or to allocation X 2j (Lemma
1). In the former case set vj to be false and in the latter case to be true. Further,
Lemma 2 implies that in each clause cell EB(Ci) at least one agent ck

i is linking
- and it is easy to see that this agent will correspond to a true literal. So B is
satisfied.
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4.2 Pareto optimal allocations

Problem better allocation.
Instance. An economy E .
Question. Does E admit an allocation Y such that y(a) �a g(a) for
each agent a ∈ A?

Theorem 3 Problem better allocation is NP-complete even in the case Q =
2.

Proof. We again use a polynomial transformation from R3-sat. Econonomy EB

will have N = 6m+ 5n agents.
Variable cell EB(vj) consists of 5 agents p1j , p

2
j , q
1
j , q

2
j , rj and clause cell EB(Ci)

contains 6 agents c1i , c
2
i , c
3
i and zi, t

1
i , t
2
i .

Preferences of agents of EB are given in Figures 5 and 6. In Figure 6 the
symbol c2i represents all the bundles (c

k
i , c

l
i) for k, l = 1, 2, 3, k 6= l in any strict

order and the symbol (zi, Yi) represents all the bundles (zi, c
k
i ) for k = 1, 2, 3 in

any strict order. Further, the symbol V (ck
i ) is equal to the pair (c

k
i , c(c

k
i )) if the

kth position of Ci is the first occurrence of a particular literal, or equivalently if
v(ck

i ) is equal to p1j or to q1j . Similarly, V (c
k
i ) is equal to the pair (c(c

k
i ), c

k
i ) if the

kth position of Ci is the second occurrence of a particular literal, which happens
if v(ck

i ) is equal to p2j or to q2j .

P (p1j) : (c(p
1
j), p

1
j), (p

1
j , rj), (p1j , p

1
j)

P (p2j) : (p
2
j , c(p

2
j)), (rj, p

2
j), (p

2
j , p
2
j)

P (q1j ) : (c(q
1
j ), q

1
j ), (q

1
j , rj), (q1j , q

1
j )

P (q2j ) : (q
2
j , c(q

2
j )), (rj, q

2
j ), (q

2
j , q

2
j )

P (rj) : (p2j , p
1
j), (q2j , q

1
j ), (rj, rj)

Figure 5: Preferences of agents of a variable cell

P (ck
i ) : (c

k
i , zi), (zi, c

k
i ), V (ck

i ), (ck
i , c

k
i ) for k = 1, 2, 3

P (zi) : c2i , (Yi, zi), (zi, t
1
i ); (zi, zi)

P (t1i ) : (t
1
i , t
2
i ), (t

1
i , t
1
i )

P (t2i ) : (t
2
i , t
1
i ), (t

2
i , zi), (t2i , t

2
i )

Figure 6: Preferences of agents of a clause cell

Now we show that E admits an allocation Y such that y(a) �a g(a) for each
agent a ∈ A if and only if B is satisfiable.
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First, let B be satisfied by a truth assignment f . Let us construct allocation
Y in the following way: If vj is true, we set

y(p1j) = (c(p1j), p
1
j); y(p2j) = (p

2
j , c(p

1
j));

y(q1j ) = (q1j , rj); y(q2j ) = (rj, q
2
j ); y(rj) = (p

2
j , p
1
j)

and if vj is false, we have

y(q1j ) = (c(q1j ), q
1
j ); y(q2j ) = (q

2
j , c(q

1
j ));

y(p1j) = (p1j , rj); y(p2j) = (rj, p
2
j); y(rj) = (q

2
j , q

1
j )

In each clause cell EB(Ci) we assign y(ck
i ) = V (ck

i ) for each agent ck
i that corre-

sponds to a position containing true literal. Since each clause is satisfied by f ,
either one, two or all three y-agents of in EB(Ci) are already assigned. For the
other agents of EB(Ci) do the following. If just one c-agent, say ck

i , has not yet
been assigned, put

y(ck
i ) = (c

k
i , zi); y(zi) = (zi, c

k
i ); y(t

1
i ) = (t

1
i , t
2
i ); y(t

2
i ) = (t

2
i , t
1
i ).

If two c-agents, say ck
i and c`

i , have not yet been assigned, put

y(ck
i ) = (c

k
i , zi); y(c`

i) = (zi, c
`
i);y(zi) = (c

`
i , c

k
i ); y(t

1
i ) = (t

1
i , t
2
i ); y(t

2
i ) = (t

2
i , t
1
i ).

If all the c-agents have been assigned, put

y(zi) = (zi, t
1
i ); y(t

1
i ) = (t

1
i , t
2
i ); y(t

2
i ) = (t

2
i , zi).

Clearly, each agent has improved compared to their endowments.
Now suppose that there exists an allocation Y in which all agents a ∈ A

strictly prefer the bundle y(a) to the bundle g(a). Then since in each clause cell
EB(Ci), at most two c-agents can improve by getting the good of agent zi, at least
one of them, say ck

i will be linking, i.e. receive the bundle V (ck
i ). Now let us look

at EB(vj). Agent rj can improve only by getting either the bundle (p2j , p
1
j) or the

bundle (q2j , q
1
j ). In the former case, exactly agents p1j and p2j must be linking, in

the latter one, agents q1j and q2j . Now it is clear that when setting vj true in the
former case and vj false in the latter case, the truth assignment will be consistent
and formula B satisfied.

Problem po-test
Instance. An economy E and an allocation X for E .
Question. Is X not Pareto optimal for E?

Corollary 1 Problem po-test is NP-complete even in the case Q = 2.

Proof. The statement of the Theorem is implied by Theorem 3, as problem
po-test is a special case of better allocation.
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5 Conclusion and open problems

The Shapley-Scarf economy with several types of commodities, studied in this
paper, turns out to be very interesting from the computational point of view. It
is pessimistic to see that even when the agents are allowed to own just one unit
of each comodity type, several problems become hard already for two commodity
types. There are still many open questions, here we suggest at least some of
them.

1. The size of the description of the economy grows exponentially with the
number of commodity types, since the preference list of an agent can con-
tain up to NQ entries. Are there some interesting cases with a succinct rep-
resentation? One possibility is suggested in [5]: for a complete description
of additively separable preferences, just N2Q numbers are needed (utility
values of each agent for each commodity). However, additively separable
preferences form a relatively small class, moreover, neither for them the
complexity of the core existence problem has been resolved. Another pos-
sibility would be to consider a different form of separable preferences, e.g.
obtained by extending linear orderings of commodities of one type to pref-
erences over bundles in some way.

2. A competitive equilibrium of an economy is a pair of two objects: prices for
each commodity and an allocation such that each agent is assigned the best
bundle (according to his preferences) he can afford at the current prices,
when he sells his endowment. Konishi, Quint and Wako [5] constructed an
example that does admit any competetive equilibrium (Example 3.3), but
the complexity of the existence problem for the competitive equilibrium
remains open.

3. Even if the number of agents N as well as the number of commodity types
Q are very small, the number of different ecomomies is huge: for N = 3
and Q = 2 it is equal to (9!)3. The proof of core nonemptyness for this case
presented in [5] (Proposition 2.1) uses a detour through NTU games and
the deep Scarf’s Theorem. Is it not possible to extend a similar aproach to
a greater number of agents and/or commodity types? It would also be vey
interesting to find a purely combinatorial proof of this assertion.
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